物理数学 演習 I 146 (2005/07/07)

龍谷大学 ▷ 理工学部 ▷ 数理情報学科 ▷ 樋口 ▷ 担当科目 ▷ 2005 年 ▷ 物理数学 演習 I▷ 10 回

全体 目次 前回 次回 略解 更新 Time-stamp: "2005/07/07 Thu 09:32 hig"

quiz 略解 12

運動方程式は
$$3\frac{\mathrm{d}^2 \boldsymbol{r}}{\mathrm{d}t^2}(t) = \begin{pmatrix} -12\cos 2t \\ -6\sin 2t \end{pmatrix}$$
. 積分して
$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}(t) = \begin{pmatrix} -2\sin 2t + C_1 \\ \cos 2t + C_2 \\ C_3 \end{pmatrix}, \quad \boldsymbol{r}(t) = \begin{pmatrix} \cos 2t + C_1 t + D_1 \\ \frac{1}{2}\sin 2t + C_2 t + D_2 \\ C_3 t + D_3 \end{pmatrix}.$$
 初期条件より $C_1 = 2, C_2 = -1, C_3 = 2, D_1 = -1, D_2 = 0, D_3 = 0.$

quiz 略解 13

初速は $V_x=5[\mathrm{m/s}], V_z=5\sqrt{3}[\mathrm{m/s}]. \ x(t)=20$ となる時刻 t=T [s] を求めると, $T=4[\mathrm{s}]. \ z(4)=-\frac{1}{2}g\cdot 4^2+5\sqrt{3}\cdot 4=-44[\mathrm{m}]$ なのでバウンドしてしまう.. 有効数字 2 桁なので, 3 桁までとって計算し, 最後に四捨五入する.

物理数学 演習 I 147 (2005/07/07)

10. 等速円運動と単振動

10.1 単振動

質量 m の物体の, x 軸上の運動

$$\mathbf{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} R\cos(\omega t + \phi) \\ 0 \\ 0 \end{pmatrix} \tag{137}$$

を *x* 軸上の

単振動|,|調和振動|という. ただし, $R(>0), \omega, \phi$ は定数.

速度

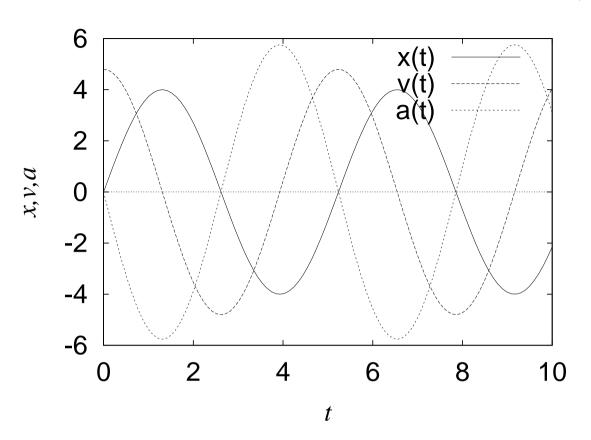
$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}(t) = \begin{pmatrix} -R\omega\sin(\omega t + \phi) \\ 0 \\ 0 \end{pmatrix} \tag{138}$$

加速度

$$\frac{\mathrm{d}^2 \boldsymbol{r}}{\mathrm{d}t^2}(t) = \begin{pmatrix} -R\omega^2 \cos(\omega t + \phi) \\ 0 \\ 0 \end{pmatrix} = -\omega^2 \boldsymbol{r}(t). \quad (139)$$

$$\mathbf{F}(t) = m \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2}(t) = \begin{pmatrix} -mR\omega^2 \cos(\omega t + \phi) \\ 0 \\ 0 \end{pmatrix} = -m\omega^2 \mathbf{r}(t).$$

(140)



アニメi/V/EZアプリ

物理数学 演習 I 149 (2005/07/07)

単振動のいろんな量) ちょっとたいへんだけどおぼえよう.

記号	単位	名前	意味 (単振動)
R	[m]	振幅/半径	原点からの最大距離
ω	[rad/s]	角速度	単位時間あたりの位 相の変化
ϕ	[rad]	初期位相	時刻 $t=0$ における 位相
$\omega t + \phi$	[rad]	位相	cos の引数
$T = \frac{2\pi}{\omega}$	[s]	周期	もとの位置, 速度にもどるまでの時間
$f = \frac{1}{T}$	$ \begin{array}{c c} [1/s] \\ = [Hz] \end{array} $	振動数	単位時間に何回振動 するかという数

物理数学 演習 I 150 (2005/07/07)

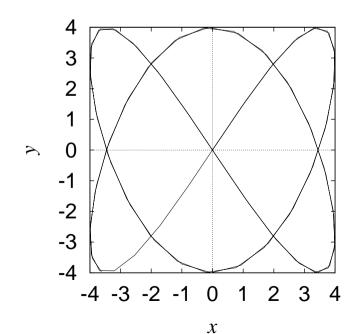
10.2 単振動の組みあわせ――リサジュー運動

x,y 軸方向に、それぞれ単振動している物体を考えよう. 運動

$$\mathbf{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} R_1 \cos(\omega_1 t + \phi_1) \\ R_2 \cos(\omega_2 t + \phi_2) \\ 0 \end{pmatrix}$$
(141)

を リサジュー運動 という. ただし, $R_i > 0, \omega_i, \phi_i$ は定数.

軌跡の例.



i/V/EZ アプリ

http://hig3.net > 物理数学 演習 I > リサジュー運動

物理数学 演習 I 151 (2005/07/07)

10.3 等速円運動

リサジュー運動の特別な場合 $R=R_1=R_2, \omega=\omega_1=\omega_2,$

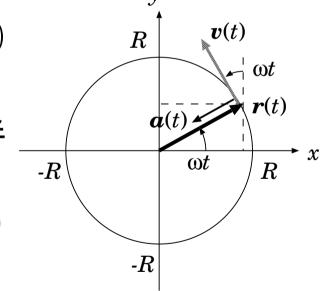
$$\phi_1 = 0, \phi_2 = -\frac{1}{2}\pi$$
 を考えよう. $\cos(\omega t - \frac{1}{2}\pi) = \sin(\omega t)$.

位置ベクトル

$$r(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} R\cos\omega t \\ R\sin\omega t \\ 0 \end{pmatrix}.$$

上軌跡 $x^2 + y^2 = R^2, z = 0$ より, xy 平面上の半径 R の円.

r(t) の向きは、x 軸の正の向きから 反時計回り にはかって ωt (時刻に比例)



これは等速円運動. 等速円運動の x 座標, または y 座標だけを見ると単振動になっている.

i/V/EZ アプリアニメ

http://hig3.net > 物理数学 演習 I > 単振動と等速円運動

速度ベクトル

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}(t) = \begin{pmatrix} -R\omega\sin\omega t \\ +R\omega\cos\omega t \end{pmatrix} \tag{143}$$

加速度ベクトル

$$\frac{\mathrm{d}^2 \boldsymbol{r}}{\mathrm{d}t^2}(t) = \begin{pmatrix} -R\omega^2 \cos \omega t \\ -R\omega^2 \sin \omega t \end{pmatrix} = -\omega^2 \boldsymbol{r}(t). \tag{144}$$

等速円運動を引き起こす力

$$F(t) = m \frac{\mathrm{d}^2 r}{\mathrm{d}t^2}(t) = \begin{pmatrix} -mR\omega^2\cos\omega t \\ -mR\omega^2\sin\omega t \end{pmatrix} = -m\omega^2 r(t)$$
.
$$(145)$$
 かの 101 は一定、 は一定 は一定 は一定 ない.

力の大きさ
$$|m \frac{\mathrm{d}^2 \boldsymbol{r}}{\mathrm{d}t^2}(t)| = mR\omega^2.$$
(一定)

向きは r(t) と平行で逆向き.

つまり、力は回転の中心を向いている(向心力といわれる)

したがって、力と速度ベクトル $\frac{\mathrm{d}r}{\mathrm{d}t}(t)$ とは直交. これは等速運動すべてに成り立つ性質なのだった (夏のプチテスト 3)

ちょっと一般化

 $\phi_1 = \phi, \phi_2 = \phi - \frac{1}{2}\pi$. ϕ :新しい定数. いままでは $\phi = 0$ としてた.

$$\mathbf{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} R\cos(\omega t + \phi) \\ R\sin(\omega t + \phi) \\ 0 \end{pmatrix} = \begin{pmatrix} R\cos(\omega(t + \frac{\phi}{\omega})) \\ R\sin(\omega(t + \frac{\phi}{\omega})) \\ 0 \end{pmatrix}$$
(146)

これも等速円運動.

時刻
$$t=0$$
 の位置が $\begin{pmatrix} R \\ 0 \\ 0 \end{pmatrix}$ でなく $\begin{pmatrix} R\cos\phi \\ R\sin\phi \end{pmatrix}$ になっただけ.

あるいは, $m{r}=\begin{pmatrix}R\\0\\0\\0\end{pmatrix}$ となる時刻が, t=0 から t にずれた だけ (出発時刻の変更).

等速円運動のいろんな量 ちょっとたいへんだけどおぼえよう.

記号	単位	名前	意味 (単振動)	(等速円運動)
R	[m]	振幅/半径	原点からの最大距離	半径
ω	[rad/s]	角速度	単位時間あたりの位 相の変化	単位時間あたり の位相の変化
ϕ	[rad]	初期位相	時刻 $t=0$ における 位相	時刻 $t=0$ における位相
$\omega t + \phi$	[rad]	位相	cos の引数	x 軸からはかっ た角.
$T = \frac{2\pi}{\omega}$	[s]	周期	もとの位置, 速度に もどるまでの時間	一周するまでの 時間
$f = \frac{1}{T}$	$ \begin{array}{c c} [1/s] \\ = [Hz] \end{array} $	振動数	単位時間に何回振動 するかという数	単位時間に何周するかという数

物理数学 演習 I 156 (2005/07/07)

位置,速度,加速度ベクトルの大きさの間には,

$$|\boldsymbol{r}(t)| = R,\tag{147}$$

$$\left|\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}(t)\right| = R\omega,\tag{148}$$

$$\left|\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2}(t)\right| = R\omega^2 \left(=\frac{\left|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(t)\right|^2}{R}\right) \tag{149}$$

などの関係があることがわかる. これらはおぼえなくてよい. r(t) の式 (142) だけ書ければ, 微分して全部出せるから.

例題 22

30 秒に1回転しているメリーゴーラウンドがある. 中心から 10[m] のところで白馬に乗っている人は円運動している. この人の角速度を求めよう. 速さと加速度の大きさを求めよう.

104

10.4 単位のはいった計算

略記:

キログラムメートル毎秒毎秒 \leadsto ニュートン $[\ker /s^2] \leadsto [N]$

ニュートンメートル毎アンペア毎秒 \leadsto ボルト $[N \cdot m/(A \cdot s)] \leadsto [V]$

等式,不等式の両辺は必ず同じ単位になる.

キロ、ミリなどは、単位の大きさを 10^n 倍変える接頭語.

倍率	接頭語		使用例	倍率	接頭語		使用例
10^{9}	ギガ	G	ギガバイト,	10^{-1}	デシ	J	
10^{6}	メガ	M	メガヘルツ	_ 0		d	デシリットル
10^{3}	+0	k		10^{-2}	センチ	С	
10^{2}	ヘクト	h	^ <i>D D</i> _ ^	10^{-3}	ミリ	m	
10-	ヘクト	Π	ヘクタール =へ クト アール	10^{-6}	マイクロ	μ	
401	_ ^	1	71 7 - 70	10^{-9}	ナノ	n	
10^{1}	デカ	da					

例題 23

加速度の大きさ $36 \text{km}/\text{分}^2$ は, m/s^2 でいうと?

105

quiz 14

音楽 CD(直径 12cm) は、(全曲の始めごろには) 毎分約 500 回転している。このときの角速度 ω [rad/s] と振動数 f [1/s] を求めよう。CD の縁の部分は、どれだけの速さで動いているか求めよう。

| 注 | 平均 48 倍速の CDROM は, この約 48 倍の速さです.

quiz 15

物体 1 が, xy 平面内で, 原点を中心とする等速円運動をしている. 半径は 2, 振動数は $\frac{1}{12}$ で, 運動の向きは, (右手系の)z 軸の正の向きから見て反時計回りである. 時刻 t=0 の位置ベクトルを $\mathbf{r}(0)=\begin{pmatrix} -\sqrt{2}\\ -\sqrt{2}\\ 0\end{pmatrix}$ である.

- 1. 初期位相を、初期条件から定めて、r(t) の式を求めよう.
- 2. 物体 1 が直線 y = -x, z = 0 上にくる時刻を求めよう.
- 3. 物体 1 は直線 y = -x, z = 0 の, $-2 \le x \le -1$ の部分を通過するか判定しよう.
- 4. 物体 2 が

$$\mathbf{r}_2(t) = \begin{pmatrix} \cos(2\pi t) \\ \sin(2\pi t) \\ 0 \end{pmatrix} \tag{150}$$

にしたがって運動している. 物体 1 と物体 2 がもっとも接近する時刻と, そのときの距離を求めよう.

物理数学 演習 I 161 (2005/07/07)

科目のページ + リクエスト / 質 問 / 苦情用掲示板

http://hig3.net

全体┃目次┃前回┃次回┃略解

講義のビデオ

UserID:

Password: