回帰分析

樋口さぶろお http://hig3.net

龍谷大学理工学部数理情報学科

生活の中の統計技術 L04(2018-10-15 Mon) ^{最終更新:} Time-stamp: "2018-11-05 Mon 14:31 JST hig"

今日の目標

- 2 変数の量的データから, Excel で散布図が描ける
- 2 変数の量的データから, Excel で共分散と相関 係数と回帰直線が求められる

樋口さぶろお (数理情報学科)

L03-Q1 Quiz 解答:共分散
$$\overline{x} = 4, s_x^2 = 4, s_x = 2.$$

 $\overline{y} = 13, s_x^2 = 122/5 = 24.4, s_y = \sqrt{122/5} = 4.94.$
共分散 $s_{xy} = \frac{1}{5}[(1-4)(5-13) + (3-4)(15-13) + (4-4)(14-13) + (5-4)(11-13) + (7-4)(20-13)] = 41/5 = 8.2.$
相関係数 $r = \frac{41/5}{2\cdot\sqrt{122/5}} = 0.83.$

ここまで来たよ

2 略解:複数のテストの点数の相関

回帰分析

回帰 (regression), 直線回帰=単回帰分析=1 変数回帰分析 物理実験 2 変量データ (*x*, *y*) が 相関係数 $r = \pm 1$ に近い \Leftrightarrow 散布図上のデータ点 (x, y) がほぼ直線に載っ ている)の式 y = ax + bを知りたい! その直線 つまり a. 定数項 b を決めたい. y: 目的変数(従属変数) x: 説明変数(独立変数) 何でそんなことしたいの? 法則を見つけたい 中間テストの点数 x から期末 テストの点数 y を予測したい

樋口さぶろお (数理情報学科)

L04 回帰分析

回帰直線の決め方

① 定規をあてて '真ん中' を通るように
 ② 最小2乗法で.

最小2 乗法

直線からのずれの2乗 d^2 の合計

$$L(a,b) = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

の最小条件 $\frac{\partial L}{\partial a} = \frac{\partial L}{\partial b} = 0$ で a, b を決める. 微積分 1

樋口さぶろお (数理情報学科)

直線回帰の公式

回帰直線

 $x_i, y_i \ (i = 1, ..., N)$ の平均値を $\overline{x}, \overline{y}$,標準偏差を S_x, S_y ,相関係数をrとする. このとき回帰直線は,

$$\mathbf{y} = \frac{r \times S_y}{S_x} \times (\mathbf{x} - \overline{x}) + \overline{y} = a\mathbf{x} + b.$$

傾きは
$$a = \frac{r \times S_y}{S_x} = \frac{C_{xy}}{S_x^2}$$
, 切片は $b = (\bigtriangleup (\overline{x}, \overline{y})$ を通るような値)

樋口さぶろお (数理情報学科)

L04-Q1

重回帰

説明変数の個数が
$$p \ge 2$$
 になっただけ.
目的変数 y (期末試験の点数)
説明変数 x_1, \dots, x_p (小テスト 1 の点数, ..., 小テスト p の点数)
 $p = 1$ $y = a_1x_1 + b$
↓
 $p = 2$ $y = a_1x_1 + a_2x_2 + b$. 3次元空間の中の平面.
 $p \ge 2$ $y = a_1x_1 + a_2x_2 + \cdots + a_px_p + b$.

回帰分析 Excel で統計

ここまで来たよ

2 略解:複数のテストの点数の相関

準備

統計ソフトウェア実習室にインストールされているのは

 R 無料. オープンソース. 解説書が多い.
 SPSS 伝統ある高級品. 社会学部向け.
 Excel 機能は限られ怪しいところもあるが, 普及率高い. 龍大では Office365 で無料.

今日は Excel を使ってみます. スタートボタン >Excel 2016

統計分析のための準備

| ファイル > オプション > アドイン > Excel のアドイン > 設定 > 分析ツール | に チェックを入れて OK する. 回帰分析 Excel で統計

表計算ソフトウェア (Excel) による主な分析 int 数学 I

どこかの段階でデータ範囲を指定, または関数の引数にデータ範囲を指定.						
	メニューヘ	ベース	関数ベース			
平均值,分散,	データ >	分析 > データ分析	平均值 av	verage, 分		
標準偏差	> 基本統言	計量 > 統計情報	散 var.p,	標準偏差		
			stdev.p, 最	:頻値 mode		
四分位数	データ >	分析 > データ分析	中央值 med	ian, 四分位		
	> 順位と言	百分位数	数 quartil	е		
度数分布表, ヒ	データ >	分析 > データ分析	frequency	+ グラフ		
ストグラム	> ヒストク	ゲラム > 入力範囲と			行_構の-	ЬЛ.
	データ区間	5			「一」一一で	270
散布図	挿入 > グ	ラフ > 散布図				
共分散, 相関係	データ >	分析 > データ分析	covar=cova	ariance.p,		
数	> 共分散,	相関	correl			
回帰分析	データ >	分析 > データ分析	linest			
	> 回帰分析	斤				
クロス集計表	挿入 > テ	ーブル > ピボット				
	テーブル					
の並び, 列=縦のセルの並び						
メニューベースのデータ分析 i 基本統計量の分散は, さらに $\frac{n-1}{n}$ 倍しないと, 「					「データの)分
散」var.p にならな	まい.					
樋口さぶろお (数理情報学科)		L04 回帰分析		生活の中の統計技術	ī (2018)	11/13

メニューベースでデータ分析をするときの注意

- Excel は,1種類のデータは列方向(縦方向)にならんでいるとデフォルトでは想定する.分析の種類によっては,列方向,行方向のどちらに並んでいるかを指定できるものもある.
- 2 変量 (p 変量)の統計量である, 共分散 S_{xy} や相関係数 r_{xy} の出力は

のように行列状にになっている. S_{yy} や r_{yy} は, y = x であるときの $S_{xy}, r.$ よく考えると, $S_{yy} = S_y^2, r_{yy} = 1$ であることに気づく. $p \ge 3$ のときは $p \times p$ 行列になる (正方形状に並ぶ).

 「ラベル」は,1行目(または1列目)に書かれているのがデータ(60 点)でなく,変数名(小テスト1)であることを表す. 回帰分析 Excel で統計

メニューベースの回帰分析, 重回帰分析

入力

入力 Y 範囲 = 目的変数

入力 X 範囲 = 説明変数 (複数個あれば重回帰になる) 出力

- 重相関 R = 相関係数 r
- 重決定 R2 = 決定係数 r²
- 切片 = 回帰直線の切片 b
- X 値 1(またはラベルで指定した変数名) = 回帰係数 a, a₁.
- X 値 2,…(またはラベルで指定した変数名) = 重回帰の係数 *a*₂ など となっていく.