重回帰分析

樋口さぶろお http://hig3.net

龍谷大学理工学部数理情報学科

生活の中の統計技術 L05(2018-10-22 Mon)

最終更新: Time-stamp: "2018-11-05 Mon 14:31 JST hig"

今日の目標

重回帰分析のあてはまりのよさ/わるさを評価できる

ここまで来たよ

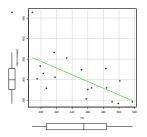
③ 略解:回帰分析

- 4 重回帰分析
 - 回帰分析
 - 説明変数の選択

回帰分析

回帰 (regression), 直線回帰=単回帰分析=1 変数回帰分析

物理実験


2変量データ (x,y) が

相関係数 $r=\pm 1$ に近い \Leftrightarrow 散布図上のデータ点 (x,y) がほぼ直線に載っている

その直線 (つまり a

) の式 y = ax + b を知りたい!

a, 定数項 b を決めたい.

y: 目的変数 (従属変数) x: 説明変数 (独立変数) 何でそんなことしたいの?

- 法則を見つけたい
- 中間テストの点数 x から期末 テストの点数 y を予測したい

相関についてご注意

- x を説明変数, y を目的変数にしたときの回帰直線 y=ax+b と, x,y を入れ替えたときの回帰直線は
- 決定係数 \mathbb{R}^2 は, 結果としては相関係数の 2 乗だが, 意味としては,

$$R^2 = \frac{ 回帰直線上の \ y \ の分散}{ ec{ au} - extstyle ex$$

変動のうちどれだけの割合を,回帰直線で説明できるかの比. 1 に近いほどよい.

L05-Q1

Quiz(回帰係数と回帰直線)

ある2変量データ (x,y) について次のことがわかっている.

(, 0 ,	
x の平均値 \overline{x}	9
y の平均値 \overline{y}	-4
x の分散 s_x^2	49
y の分散 $s_y^{\tilde{2}}$	36
x,y の共分散 s_{xy}	-25
(x,y) のデータの個数 n	16

このとき, x を説明変数, y を目的変数とする回帰直線の式を, x,y の式で書こう. 整理しなくてよい.

L05-Q2

Quiz(回帰係数と回帰直線)

ある 2 変量データ (x,y) を Excel の分析ツールで回帰分析したところ, 次のような結果になった. ただし, 目的変数が y= 期末試験の点数, 説明変数が x= 中間試験の点数 である.

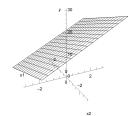
回帰統計

重相関 R 0.918984208 重決定 R2 0.844531974 補正 R2 0.792709299 標準誤差 11.60771105 観測数 5

分散分析表

	日田度	変 動	分散
回帰	1	2195.783133	2195.783133
残差	3	404.2168675	134.7389558
合計	4	2600	
	係数	標準誤差	t
切片	14.4578313	33 12.4185058	32 1.164216657
中間試験	0.81325303	12 0.20145476	66 4.036901322

- 回帰直線の式を書こう.
- ② 中間試験が50点のときの期末試験の点数を予想しよう.


重回帰

説明変数の個数が $p \ge 2$ になっただけ.

目的変数 y (期末試験の点数)

説明変数 x_1, \dots, x_p (小テスト 1 の点数, ..., 小テスト p の点数)

$$p=1$$
 $y=a_1x_1+b$ \downarrow $p=2$ $y=a_1x_1+a_2x_2+b$. 3次元空間の中の平面. $p\geq 2$ $y=a_1x_1+a_2x_2+\cdots a_px_p+b$.

重回帰のときも、決定係数 R^2 が 1 個だけある.

L05-Q3

Quiz(回帰係数と回帰直線)

ある2変量データ(x,y)を Excel の分析ツールで回帰分析したところ,次のような結果になった. ただし、目的変数がy =期末試験の点数、説明変数がx =中間試験の点数である。

回帰統計

重相関 R 0.919106444 重決定 R2 0.844756656 補下 R2 0.689513312 標準誤差 14.20620805 観測数 5

分散分析表	₹			
	自由度	変動	分散	
回帰	2	2196.367306	1098	.183653
残差	2	403.6326942	201.8	3163471
合計	4	2600		
	係数	標準誤差	t	
切片	13.2593340	01 26.967225	561 0.	491683283
レポート	0.03128153	34 0.5814272	257 0.	053801285
中間試験	0.81231079	97 0 2471735	536 3.	286398738

- 重回帰の式を書こう.
- ② レポートが40点,中間試験が50点のときの期末試験の点数を予想しよう.

ここまで来たよ

③ 略解:回帰分析

- 4 重回帰分析
 - 回帰分析
 - 説明変数の選択

問 単回帰 (p=1), p=2 重回帰, p=3 重回帰, \cdots どれがいい?

仮の答 | 決定係数 $0 \le R^2 \le 1$ で勝負つければ?

 \rightarrow

特に

とき決定係数は1になってしまう.

いい予測モデルとは

簡単 (説明変数の個数 (自由度) が少ない) \leftrightarrow 正確 (R^2 が大きい)

自由度調整済決定係数

$$\tilde{R}^2 = \frac{R^2}{p \, \text{が大きいと大きくなるペナルティ}} = \lceil 補正 \, R^2 \rfloor \text{ in Excel}$$

どの説明変数を使う?

目的変数との相関の強さ、 \tilde{R}^2 、その他のハイテクな量をみながら、 0個から大事なものを増やしていく 全部入りから不要そうなものを減らしていく

多重共線性 (multi colinearity) I

こういうときって回帰係数決まる? 説明変数のどれかが、他の説明変数の1次式で書けてしまうとき、多重共線性がある、という.

$\overline{x_1}$	x_2	\overline{y}
5	10	55
7	14	75
9	18	95
2	4	25
:		

このとき,

- 回帰係数が不定になる (逆行列がない, みたいなもの)
 - 線形代数
- ちょっとの差で, 回帰係数の符号が変わったり, 大きぐなったりする.
 - lacktriangleright 相関係数 $r_{x_k y}$ と 回帰係数 a_k の符号が違うときは要警戒

多重共線性への対処方法

- ullet 意味を考えて、役目の重複する変数のうち1 個 x_k を取り除く
- 数値を見て、役目の重複する変数のうち 1 個 x_k を取り除く

ダミー変数

ネコの 体長と体長から体重を予想しようとしたとき, x_2 を オス=0, メス=1 のようにとるとき, ダミー変数という. これは男女差別ではないし, 予測結果に影響しない. 血液型のときは?

お知らせ

- 中間試験計画
 - ▶ 30 ピーナッツ/科目 100 ピーナッツ
 - ▶ 60 分?
 - ▶ 2018-11-12 月 でどう?
 - ▶ 出題計画
 - 60% 計算問題. データが与えられたときに, 平均値, q-分位数, 中間値, 四分位数, 分散, 標準偏差, 共分散, 相関係数, 単回帰の回帰直線, データ中の1個の数値の偏差値が求められる.
 - 30% これらの量の性質や意味についての正誤判定問題
 - 10% 上記にあてはまらないかもしれない問題 (ワイルドカード)
 - ★ Excel の操作方法については出題しない
 - ▶ 持込 紙はコピーを含め何でも. 電子機器は単機能電卓 (平方根まで) のみ