龍谷大学 > 理工学部 > 樋口 > 担当科目 > 2004 年 > 理論物理学特論

目次前回次回今回の解答

理論物理学特論 aka 群論 演習 I

樋口さぶるお 1 配布: 2004/06/14 Mon 更新: Time-stamp: "2004/06/15 Tue 15:31 hig"

8 群同型と群準同型

1. $x_1, x_2 \in \mathbb{R}^+$ とする. $\phi(x_1 \circ x_2) = \phi(x_1 + x_2) = \mathrm{e}^{x_1 + x_2} = \mathrm{e}^{x_1} \times \mathrm{e}^{x_2} = \phi(x_1) \times \phi(x_2) = \phi(x_1) \cdot \phi(x_2)$ より、群準同型写像である.

 $\phi(x)=-1\in\mathbb{R}^{ imes}$ となる $x\in\mathbb{R}^{+}$ はないので、全射でない、したがって群同型写像ではない、単射ではある、

単位元 $1 \in \mathbb{R}^{\times}$ に対して, $1 = \phi(x)$ を解くと, x = 0. よって, $\ker \phi = \{0\}$.

また, Im $\phi = \{e^x | x \in \mathbb{R}^+\} = \{y \in \mathbb{R} | y > 0\}.$

 $2. \ x_1, x_2 \in \mathbb{Z}^+$ とする. $\phi(x_1 \circ x_2) = \phi(x_1 + x_2) = m(x_1 + x_2) = mx_1 + mx_2 = \phi(x_1) + \phi(x_2) = \phi(x_1) \cdot \phi(x_2)$ よって準同型写像である. $m = \pm 1$ の時は明らかに 群同型写像. $m \neq \pm 1$ の時は、全射でないので $(\phi(x) = |m| + 1$ となるような x はない)、群同型写像ではない、単射ではある.

単位元 $0 \in \mathbb{Z}^+$ に対して 0 = mx を解くと x = 0. よって $\ker \phi = \{0\}$.

 $\operatorname{Im} \phi = \{mx | x \in \mathbb{Z}\} = (m \, \mathfrak{O}$ 倍数全体).

3. $M_1, M_2 \in \operatorname{GL}_n(\mathbb{R})$ とする. $\phi(M_1 \circ M_2) = \det(M_1 M_2) = \det(M_1) \det(M_2) = \phi(M_1) \times \phi(M_2) = \phi(M_1) \cdot \phi(M_2)$. よって準同型写像である.

単射でない (例えば、非対称行列 M に対して $\det M = \det M^{\rm t}$) ので、群同型写像でない、全射ではある.

単位元 $1\in\mathbb{R}^{\times}$ に対して, $\phi(M)=1$ とすると, $\det M=1$. よって, $\ker \phi=\operatorname{SL}_n(\mathbb{R})$. 対角成分を $x,1,1,\cdots,1$ とする対角行列を考えると, 行列式の値は, 任意の $x\neq 0$ とできるので, $\operatorname{Im}\phi=\mathbb{R}^{\times}$.

9 巡回群

- 1. \mathbb{Z}_{12}^+ の各元の位数を求めよう.
- 2. \mathbb{Z}_{12}^+ の生成元をすべて求めよう.
- $3. \mathbb{Z}_+$ と $m\mathbb{Z}_+$ (m は 0 でない整数) は群同型であることを示そう.

目次前回次回今回の解答

¹Copyright ©2004 Saburo HIGUCHI. All rights reserved.