線積分マーク2

樋口さぶろお

龍谷大学理工学部数理情報学科

ベクトル解析∇ L09(2011-06-22 Wed) 更新:Time-stamp: "2011-06-28 Tue 20:37 JST hig"

今日の目標

- ② 線積分マーク2のイメージが語れる.

http://hig3.net

略解 (ベクトル場の閉曲線に沿った線積分)

- **1** I = 0.
- **2** $I = 2\pi$.

略解 (面積分)

$$\int_{R} f(\mathbf{r}) \, dS = \int_{0}^{1} \left(\int_{0}^{\sqrt{3} x} (x^{2}y + y^{3}) \, dy \right) \, dx$$

$$= \int_{0}^{1} \left[\frac{1}{2} x^{2} y^{2} + \frac{1}{4} y^{4} \right]_{y=0}^{y=\sqrt{3} x} \, dx$$

$$= \int_{0}^{1} \left(\frac{3}{2} x^{2} x^{2} + \frac{9}{4} x^{4} \right) dx$$

$$= \frac{15}{4} \left[\frac{1}{5} x^{5} \right]_{0}^{1} = \frac{3}{4}.$$

略解 (グリーンの定理)

- ① 渦度 $(\nabla \times \mathbf{V})_z = 2y x 1$.
- ② $\int_D (\nabla \times \mathbf{V})_z \, \mathrm{d}S \, \mathrm{tt}$,

$$\int_0^1 \left(\int_0^{2x} (2y - x - 1) \, dy \right) \, dx = \int_0^1 (2x^2 - 2x) \, dx = -\frac{1}{3}.$$

または
$$\int_0^2 \left(\int_{\frac{1}{2}y}^1 (2y - x - 1) \, \mathrm{d}x \right) \, \mathrm{d}y = -\frac{1}{3}.$$

動 曲線 ∂D を 3 個の線分に分けて計算する. (0,0) と (1,0) を結ぶ線分を $C_1: \mathbf{r}(t) = (1,0)t$ $(0 \le t \le 1)$, (1,0) と (1,2) を結ぶ線分を $C_2: \mathbf{r}(t) = (1,t)$ $(0 \le t \le 2)$, (1,2) と (0,0) を結ぶ線分を $C_3: \mathbf{r}(t) = -(1,2)t$ $(-1 \le t \le 0)$ とすると,

$$\int_{C_1} \mathbf{V} \cdot d\mathbf{r} = 0, \quad \int_{C_2} \mathbf{V} \cdot d\mathbf{r} = 4, \quad \int_{C_2} \mathbf{V} \cdot d\mathbf{r} = -\frac{13}{3}.$$

よって, $\int_C \mathbf{V} \cdot d\mathbf{r} = -\frac{1}{3}$ であり, グリーンの定理が確かめられる.

略解 (グリーンの定理)

 \mathbf{V} の渦度は $(\mathbf{\nabla} \times \mathbf{V})_z = 1 - 2y$.

原点を中心とする半径 2 の円板を D とすると, $C=\partial D$. グリーンの定理を用い, D が x 軸に関して対称であることに注意すると, $\int_D y \ \mathrm{d}S=0$. また, $\int_D 1 \ \mathrm{d}S$ は領域 D の面積に等しいので,

$$\int_C \mathbf{V} \cdot d\mathbf{r} = \int_D (\mathbf{\nabla} \times \mathbf{V})_z \, dS = \int_D (1 - 2y) \, dS = \int_D 1 \, dS = \pi \cdot 2^2 \times 1.$$

グリーンの定理の鑑賞: 渦なし条件との関係

渦なしなら、閉曲線 C に対し $\int_C \mathbf{V} \cdot d\mathbf{r} = 0$.

渦なしでなければ, $\int_C \mathbf{V} \cdot \mathbf{dr} \neq 0$ となる閉曲線 C がある. (対偶は?)

渦なし条件を満たすベクトル場の線積分は、始点、終点だけで決まる

別証明.

$$\int_{C_1} \mathbf{V} \cdot d\mathbf{r} = \int_{C_2} \mathbf{V} \cdot d\mathbf{r}$$
, つまり, $\int_{C_1} \mathbf{V} \cdot d\mathbf{r} - \int_{C_2} \mathbf{V} \cdot d\mathbf{r} = 0$ を示せばよい. グリーンの定理より,

グリーンの定理の鑑賞: '定積分は原始関数の差' と似てない?

$$\int_{[a,b]} F'(x) \, dx = \sum_{x \in \partial[a,b]} \pm F(x) = F(b) - F(a)$$

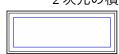
1次元の積分 = その境界の0次元の積分

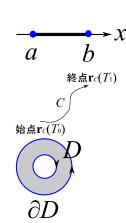
$$\int_C (\mathbf{\nabla} f(\mathbf{r})) \cdot d\mathbf{r} = f(\mathbf{r}(T_{\mbox{\scriptsize k}})) - f(\mathbf{r}(T_{\mbox{\scriptsize k}}))$$

1次元の積分 =その境界の0次元の積分

$$\int_{D} (\mathbf{\nabla} \times \mathbf{V})_{z} \, \mathrm{d}S = \int_{\partial D} \mathbf{V} \cdot \mathrm{d}\mathbf{r}$$

2次元の積分 =その境界の1次元の積分





登場人物と先週までのあらすじ

 $f(\mathbf{r})$:スカラー場, $\mathbf{V}(\mathbf{r})$:ベクトル場, 曲線 C のパラメタ表示 $\mathbf{r}(t)$ ($T_0 \leq t \leq T_1$). スカラー場の線積分 (マーク 0)

$$\int_C f \, \mathrm{d}s = \int_{T_0}^{T_1} f(\mathbf{r}(t)) \left| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(t) \right| \, \mathrm{d}t$$

ベクトル場の線積分(マーク1)

$$\int_{C} (\mathbf{V} \cdot \mathbf{t}) \, ds = \int_{C} \mathbf{V} \cdot d\mathbf{r} = \int_{T_0}^{T_1} \mathbf{V}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt}(t) \, dt$$

t: 単位接線ベクトル

ベクトル場の線積分 (マーク 2)

V · n の曲線に沿った線積分 (線積分マーク 2)

C: パラメタ表示 $\mathbf{r}(t)$ $(T_0 \le t \le T_1)$ を持つ曲線.

 $\mathbf{n}(t)$: $\mathbf{r}(t)$ における単位法線ベクトル (向きはどちらか指定).

 $\mathbf{V} \cdot \mathbf{n}$ の曲線 C に沿った線積分 (線積分マーク 2) とは, スカラー場

V · **n** の *C* 上の線積分

$$\int_{C} \mathbf{V} \cdot \mathbf{n} \, ds = \int_{T_0}^{T_1} \left(\mathbf{V}(\mathbf{r}(t)) \cdot \mathbf{n}(t) \right) \left| \frac{d\mathbf{r}}{dt}(t) \right| dt$$

のこと.

$$\mathbf{n}(t) = \frac{1}{|\mathbf{N}(t)|} \mathbf{N}(t) = \pm \frac{1}{|\mathbf{N}(t)|} (-\frac{\mathrm{d}y}{\mathrm{d}t}(t), +\frac{\mathrm{d}x}{\mathrm{d}t}(t))$$
$$|\mathbf{N}| = |\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}|$$

に注意すると, | 🚉 | が約分できて,

線積分マーク2の楽な計算法

$$\int_{C} \mathbf{V} \cdot \mathbf{n} \, ds = \int_{T_0}^{T_1} \mathbf{V}(\mathbf{r}(t)) \cdot \mathbf{N}(t) \, dt$$

ただし,

$$\mathbf{N}(t) = \pm \left(-\frac{\mathrm{d}y}{\mathrm{d}t}(t), +\frac{\mathrm{d}x}{\mathrm{d}t}(t) \right)$$

大注意: 符号は, を図や問題文の日本語から自分で判断してつける.

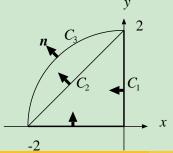
要するに、マーク1の式の $\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(t)$ のところを $\pm \frac{1}{2}\pi$ まわしただけ.

問題 (線積分 (マーク 2))

ベクトル場 $\mathbf{V}(\mathbf{r}) = (2x, x + 3y)$ を考える. 図の

- 折れ線 C₁
- ② 直線 C₂
- 円弧 C₃

について, 線積分 $(\nabla - D_2) \int_{C_i} \mathbf{V} \cdot \mathbf{n} \, ds$ を求めよう. ただし \mathbf{n} は図の向きの単位法線ベクトルとする.



問題 (ベクトル場の線積分マーク 2)

D を中心原点、半径 3 の円板とする. 境界 ∂D の外向き単位法線ベクトルを ${f n}$ とする.

ベクトル場 $\mathbf{V}(\mathbf{r}) = (x + 2y, -3x + 4y)$ に対して, 線積分 (マーク 2)

 $\int_{\mathbf{a}\mathbf{D}} \mathbf{V} \cdot \mathbf{n} \, \mathrm{d}s$ を求めよう.

線積分マーク2の意味

 $\mathbf{V}(\mathbf{r})$: 風 or 水の流れ, C:

線積分マーク2の意味

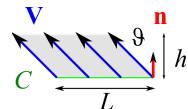
 $\int_C \mathbf{V} \cdot \mathbf{n} \, ds$ は、 \mathbf{n} の向きに C を通過する水の量 (1 秒あたり)

簡単な場合で考えよう. 曲線 C の小さい一部分を見れば, C は直線, $\mathbf{V}(\mathbf{r})$ の流れも一定.

通過した水の体積 (/深さ)

- =平行四辺形の面積
- $= L \times h$
- $= L \times |\mathbf{V}| \cos \theta$
- $= L \times |\mathbf{V}| |\mathbf{n}| \cos \theta$
- $= L \times \mathbf{V} \cdot \mathbf{n}$

$$= \int_C \mathbf{V} \cdot \mathbf{n} \, \mathrm{d}s$$



問題 (流出量)

 ${f V}$ が水の流れだと思おう. 次の流れは, 単位円板 D から流れ出しているか, 流れ込んでいるか. できれば線積分マーク 2 を具体的に計算せずに答えよう.

- **0** $\mathbf{V}(\mathbf{r}) = (-\frac{1}{2}x, -\frac{1}{2}y)$
- **2** V(r) = (3,5)
- **3** $\mathbf{V}(\mathbf{r}) = (3x, 0)$

連絡

◆ 大注意: 前回から予習復習問題の締切を1日早めてます. 月曜 26:00=火曜 02:00 が締切. その後に正解をチェックしてから quiz に 参加できるでしょ.

教科書のお奨め問題

● ベクトル場の線積分 (マーク 2) 小高 あまり書いてない. 問題 6.8(p.128)