量子力学 II 演習 問題 (第 9 回)

樋口 さぶろお*

1996年12月12日

[9-1] 1次元の自由粒子の伝播関数

時間に依存しない Hamiltonian H のもとで時間発展する 1 次元の粒子の波動関数 $\psi(x,t)$ を考える.

1. 時刻 t_0 での波動関数 $\psi(x,t_0)$ がわかっているとき, 任意の時刻 $t>t_0$ での波動関数 は, 伝播関数 $K(x,t;y,t_0)$ を用いて

(1)
$$\psi(x,t) = \int dy K(x,t;y,t_0)\psi(y,t_0)$$

で与えられることを示せ、ただし、伝播関数 $K(x,t;y,t_0)$ は

(2)
$$K(x,t;y,t_0) = \sum_{j} \phi_j(x)\phi_j^*(y) \exp(-iE_j(t-t_0)/\hbar).$$

ただし, $\{\phi_j(x)\}_{j=1,2,\dots}$ は, H の固有関数からなる正規直交完全系, E_j は ϕ_j の固有値.

- 2. 伝播関数 $K(x,t;y,t_0)$ が, $K(x,t;y,t_0)=\langle x,t|y,t_0\rangle$ であることを示せ. ただし, $\psi(x,t)=\langle x|\exp[-iHt/\hbar]|\psi\rangle$ であることに注意.
- 3. 伝播関数 $K(x,t;y,t_0)$ が微分方程式

(3)
$$\left[\frac{\partial}{\partial t} - \frac{1}{i\hbar}H(x)\right]K(x,t;y,t_0) = \delta(x-y)\delta(t-t_0)$$

を満たす Green 関数であることを示せ.

Hint. 右辺の δ -関数は, $t < t_0$ で $K(x,t;y,t_0) = 0$ よって $\psi(x,t) = 0$ となるように加えてある. ここでは, $t > t_0$ の場合のみ考えればよい. つまり右辺の δ -関数は 0 だと思ってもよい.

^{*}Internet address: hig@rice.c.u-tokyo.ac.jp URL: http://rice.c.u-tokyo.ac.jp/~hig/,へや: 駒場 4 号館 413B(学生室の隣) 氷上研究室, でんわ: (03)54.54.67.35

4. 自由粒子 $H = -(\hbar^2/2m)(d^2/dx^2)$ のとき、

(4)
$$K(x,t;y,t_0) = m^{1/2} (2\pi i\hbar(t-t_0))^{-1/2} \exp\left(\frac{im(x-y)^2}{2\hbar(t-t_0)}\right)$$

であることを示せ.

- 5. (任意の potential に対し) 粒子が時刻 t_0 に y で観測された場合に時刻 t に x で観測される条件付確率密度が $|K(x,t;y,t_0)|^2$ で与えられることを説明せよ. この意味で, $K(x,t;y,t_0) = \langle x,t|y,t_0 \rangle$ であり, transition amplitude (遷移振幅) ともいう.
- 6. 自由粒子の、運動量空間での伝播関数 $\langle p,t|p,t_0 \rangle$ を求めよ.
- 7. (任意の potential に対し) この系の '分配関数' を,

(5)
$$Z(\beta) := \int dx K(x,t;x,0) \Big|_{t=-i\beta\hbar}$$

と定義する. このとき, 系の基底エネルギー E_0 が

(6)
$$E_0 = \lim_{\beta \to \infty} -\frac{1}{Z(\beta)} \frac{\partial Z(\beta)}{\partial \beta}$$

と書けることを示せ.

参考文献

- [1] 中嶋, 吉岡, 例解 量子力学演習, 物理入門コース / 演習 3 (1991) 岩波書店.
- [2] 中嶋, 量子力学 II, 物理入門コース 6 岩波書店.
- [3] 小出, 量子力学 (II) (改訂版), 基礎物理学選書 5B(1990), 裳華房.
- [4] L. I. Schiff, Quantum Mechanics, 3rd edition, McGraw-Hill (1968). 訳書は吉岡書店.
- [5] J. J. Sakurai, Modern Quantum Mechanics, Benjamin (1985). 訳書は吉岡書店.